Saturation and an Iterative Construction Process

THU PHAM-GIA

Département de Mathématiques, Université de Moncton, Moncton, New Brunswick, Canada Communicated by Oved Shisha

Received May 23, 1974

Let $\{{}^{j}K\}_{j=1}^{\infty}$ be a sequence of kernels, let $\{a_{j}\}_{j=1}^{\infty}$ be a sequence of positive numbers, and let f_0 be a measurable function. Setting $J_0 = f_0$, we study the convergence in $L^p(1 \le p \le 2 \text{ and } p = \infty)$ of the sequence of singular integrals $\{J_n\}_{n=1}^{\infty}$ defined inductively by

$$J_n(x) = (a_n/(2\pi)^{1/2}) \int_{-\infty}^{\infty} J_{n-1}(x-t)^n K(a_n t) dt, \qquad x \in \mathbb{R}.$$

The convergence of $\{J_n\}$ in L^{∞} finds an application in Bray-Mandelbrojt's "repeated averaging" construction concerning a non quasi-analytic class of functions.

1

We will work with the normalized Lebesgue measure on R, the real line $(dm(x) = dx/(2\pi)^{1/2})$, and will follow Butzer [2] for the definitions of the Fourier transform f of a function $f \in L^p$ $(1 \le p \le 2)$ and of the Fourier-Stieltjes transform \check{g} of a function $g \in BV$.

For $f \in L^1$, the inverse Fourier transform of f is defined by:

$$(\mathscr{F}^{-1}f)(t) = \int_{-\infty}^{\infty} f(x) \ e^{ixt} \ dm(x), \qquad t \in R.$$

The proofs of the following propositions can be found in Butzer [2].

PROPOSITION 1. Let $g_1 \in L^1$, $g_2 \in L^p$ (1 $\leqslant p \leqslant$ 2), and $\phi = g_1 * g_2$, then, $\phi \in L^p$, $\hat{\phi} = \hat{g}_1 \cdot \hat{g}_2$, a.e. (everywhere if p=1) and $\|\phi\|_p \leqslant \|g_1\|_1 \|g_2\|_p$.

PROPOSITION 2. Let $g_1, g_2 \in BV$ and $\psi(x) = (1/(2\pi)^{1/2}) \int_{-\infty}^{\infty} g_1(x-u) dg_2(u)$; then, $\psi \in BV$, $\dot{\psi} = \dot{g}_1 \cdot \dot{g}_2$ and $\|\psi\|_{BV} \leqslant \|g_1\|_{BV} \|g_2\|_{BV}$. If $g_2(x) = \int_{-\infty}^x h(t) dt$, $h \in L^1$ (i.e., g_2 is absolutely continuous), then

 $\psi = \check{g}_1 \cdot h, \text{ and } \|\psi\|_{BV} \leqslant \|g_1\|_{BV} \|h\|_1.$

PROPOSITION 3. Let $g \in BV$, $f \in L^p$ $(1 \le p \le 2)$, and

$$h(x) = (1/(2\pi)^{1/2}) \int_{-\infty}^{\infty} f(x - u) \, dg(u);$$

then, $h \in L^p$, $\hat{h} = \hat{f} \cdot \check{g}$ a.e., (everyhwere if p = 1) and $||h||_p \leqslant ||f||_p ||g||_{BV}$.

DEFINITION 1. A function $K \in NL^1$ is called a kernel; by K_a , a > 0, we mean the function defined by:

$$K_a(x) = aK(ax), \quad x \in R.$$

We have the following theorem concerning the saturation class in L^p $(1 \le p \le 2)$ of the singular integral

$$J_{(\rho,f)}(x) = \int_{-\infty}^{\infty} f(x-u) K_{\rho}(u) dm(u), \quad x \in R$$

THEOREM (Butzer). Let the kernel K be such that there exist $\psi \in NBV$, and constants $c \neq 0$, $\gamma > 0$ satisfying:

$$(1 - \hat{K}(v))/c |v|^{\gamma} = \check{\psi}(v), \quad v \neq 0.$$

Then, the saturation class for the singular integral $J_{(\rho,\cdot)}$ (with order $\rho^{-\gamma}$) is:

(i) In L^1 , the class of functions f for which there exists $g \in BV$ such that

$$c \mid v \mid^{\gamma} \hat{f}(v) = \check{g}(v). \tag{1}$$

(ii) In L^p (1 < $p \le 2$), the class of functions f for which there exists $g \in L^p$ such that

$$c \mid v \mid^{\gamma} \hat{f}(v) = \hat{g}(v). \tag{2}$$

Proof. See Butzer [2].

We denote the saturation class above by

$$S(K, \rho^{-\gamma}, p)$$
, for $1 \le p \le 2$.

2

We now consider $\{{}^nK\}_{n=1}^\infty$, a sequence of kernels; $\{a_n\}_{n=1}^\infty$, a sequence of positive numbers; and f_0 , a measurable function. By $\{f_n\}_{n=1}^\infty$, we mean the sequence defined by the iterative process

$$f_{n+1} = f_n * {}^{n+1}K_{a_{n+1}}, \qquad n = 0, 1, 2,...$$

We have the following

THEOREM 1. Suppose there exist constants $\gamma > 0$, $c \neq 0$ and a sequence of functions $\{{}^{j}\psi\}_{j=1}^{\infty} \subset NBV$ such that for $j \geqslant 1$

$$(1 - {}^{j}\hat{K}(u))/c \mid u \mid^{\gamma} = {}^{j}\hat{\psi}(u), \qquad u \in R, \qquad u \neq 0.$$
 (3)

Moreover, suppose that $\prod_{j=1}^{\infty} || {}^{j}K ||_{1}$ converges.

If $\sum_{j=1}^{\infty} (1/a_j)^{\gamma}$ converges, then, for $f_0 \in S({}^1K, \rho^{-\gamma}, p)$ $(1 \le p \le 2)$, the sequence $\{f_n\}_{n=1}^{\infty}$ converges in L^p to f_{L^p} , and we also have $\|f_{L^p} - f_0\|_p \le A \sum_{j=1}^{\infty} (1/a_j)^{\gamma}$, where A is a constant independent of $\{a_j\}$.

Proof. We follow Butzer [1].

(i) p = 1. Since $f_0 \in S({}^1K, \rho^{-\gamma}, 1)$, by Butzer's theorem, there exists $g \in BV$ such that

$$c \mid v \mid^{\gamma} \hat{f}_0(v) = \check{g}(v), \qquad v \in R. \tag{4}$$

Consider the sequence $\{g_n\}$ defined by

$$g_0 = g$$

and

$$g_{n+1} = g_n * {}^{n+1}K_{a_{n+1}}, \qquad n = 0, 1, 2, \dots$$

By Proposition 2, we have, for $n \ge 1$,

$$\|g_n\|_{BV} \leqslant \|g_{n-1}\|_{BV} \|^n K_{a_n}\|_1 \leqslant \cdots \leqslant \|g\|_{BV} \prod_{j=1}^n \|^j K_{a_j}\|_1$$

Since $\|{}^{j}K_{a_{j}}\|_{1} = \|{}^{j}K\|_{1}$, and $\prod_{j=1}^{\infty} \|{}^{j}K\|_{1} < \infty$, there exists a constant A > 0 such that $\|g_{n}\|_{BV} \leq \|g\|_{BV} M_{n} \leq A, n \geq 1$.

Also, if we define

$${}^{n}\phi_{a_{n}}(x) = (1/(2\pi)^{1/2}) \int_{-\infty}^{\infty} g_{n-1}(x-u) d({}^{n}\psi(a_{n}u)), \qquad x \in R,$$

then,

$${}^n \phi_{a_n}(v) = \check{g}_{n-1}(v) {}^n \psi(v/a_n), \qquad v \in R.$$

Setting ${}^n\psi_{a_n}(x) = {}^n\psi(a_nx),$

$$\| {}^{n}\phi_{a_{n}}\|_{BV} \leqslant \| g_{n-1}\|_{BV} \| {}^{n}\psi_{a_{n}}\|_{BV} \leqslant A \| {}^{n}\psi\|_{BV} = A.$$
 (5)

Now, as $f_1 = f_0 * {}^1K_{a_1}$, we have $\hat{f}_1 = \hat{f}_0 \cdot {}^1\hat{K}_{a_1}$. Hence, $a_1^{\gamma}(\hat{f}_0 - \hat{f}_1)(v) = a_1^{\gamma}\hat{f}_0(v)[1 - {}^1\hat{K}(v/a_1)], v \in R$.

But by (3) and (4), and taking j = 1,

$$a_1^{\gamma}[\hat{f}_0(v)(1-{}^{1}\hat{K}(v/a_1))] = \check{g}(v){}^{1}\dot{\psi}(v/a_1) = {}^{1}\dot{\phi}_{a_1}(v).$$

Hence, by the uniqueness theorem on Fourier-Stieltjes transforms

$${}^{1}\phi_{a_{1}}(x) = a_{1}^{\gamma} \int_{-\infty}^{x} [f_{0}(u) - f_{1}(u)] du, \quad x \in R,$$

and by (5), $a_1^{\gamma} \| f_0 - f_1 \|_1 = \| {}^1\phi_{a_1} \|_{BV} \leqslant A$. Thus, $\| f_0 - f_1 \|_1 \leqslant Aa_1^{-\gamma}$.

We also have

$$c \mid v \mid^{\gamma} \hat{f}_{1}(v) = c \mid v \mid^{\gamma} \hat{f}_{0}(v) \cdot {}^{1}\hat{K}(v/a_{1})$$

= $\check{g}(v) \cdot {}^{1}\hat{K}(v/a_{1}) = (g \check{*}^{1}K_{a_{1}})(v) = (\check{g}_{1})(v).$

If we suppose by induction

$$c \mid v \mid^{\gamma} \hat{f}_{n-1}(v) = \check{g}_{n-1}(v), \qquad g_{n-1} \in BV$$
 (6)

then, by Proposition 2,

$$c \mid v \mid^{\gamma} f_n(v) = c \mid v \mid^{\gamma} \hat{f}_{n-1}(v) \,^{n} \hat{K}(v/a_n)$$

$$= \check{g}_{n-1}(v) \,^{n} \hat{K}(v/a_n)$$

$$= (g_n \overset{*}{*} \,^{n} K_{a_n})(v) = \check{g}_n(v).$$

As

$$f_n = f_{n-1} * {}^n K_{a_n}$$
$$f_n = f_{n-1} \cdot {}^n \hat{K}_{a_n},$$

and

$$[\hat{f}_{n-1} - \hat{f}_n](v) = \hat{f}_{n-1}(v)[1 - {}^n\hat{K}(v/a_n)], \quad v \in R$$
(7)

By (3) and (6) we have

$$a_n \hat{\gamma} f_{n-1}(v) [1 - {}^n \hat{K}(v/a_n)] = \check{g}_{n-1}(v) {}^n \check{\psi}(v/a_n) = {}^n \check{\phi}_{a_n}(v).$$

Again, by (7) and the uniqueness theorem, we have

$${}^{n}\phi_{a_{n}}(x) = (a_{n}{}^{\gamma}/(2\pi)^{1/2}) \int_{-\infty}^{x} [f_{n-1}(u) - f_{n}(u)] du, \quad x \in R,$$

and $||f_{n-1} - f_n||_1 \le Aa_n^{-\gamma}$.

As the series $\sum_{j=1}^{\infty} (1/a_j)^{\gamma}$ converges, $\{f_n\}$ is a Cauchy sequence in L^1 and converges to a limit f_{L^1} in L^1 . Moreover,

$$||f_{L^1} - f_0||_1 \leqslant A \sum_{i=1}^{\infty} (1/a_i)^{\gamma}.$$

(ii) $1 . The proof is similar to that in (i), using now the relation <math>c \mid v \mid^{\gamma} \hat{f}_0(v) = g(v), g \in L^p$ and Propositions 1 and 3. Q.E.D.

Remark. It is obvious that for $\{f_n\}$ to converge, the condition $f_0 \in S({}^1K, \, \rho^{-\gamma}, \, p)$ could be replaced by $f_r \in S({}^{r+1}K, \, \rho^{-\gamma}, \, p)$ for a certain $r \geqslant 1$.

3

THEOREM 2. Suppose there exist constants $\gamma > 0$ and A > 0 such that, for any $j \ge 1$

$$\frac{|1-{}^{j}\hat{K}(u)|}{|u|^{\gamma}}\leqslant A. \tag{8}$$

Moreover, suppose $\prod_{j=1}^{\infty} || {}^{j}K ||_{1} < \infty$.

If $\sum_{j=1}^{\infty} (1/a_j)^{\gamma} < \infty$ and there exists $N \ge 1$ such that ${}^{N}\hat{K} \in L^1$, then, for $f_0 \in L^1$, the sequence $\{f_n\}$ converges in L^{∞} (to $f_{L^{\infty}}$).

Proof. We have

$$|1-{}^{j}\hat{K}(u)|\leqslant A \mid u\mid^{\gamma}.$$

Hence,

$$|1-{}^{j}\hat{K}(u/a_{i})| \leqslant A |u|^{\gamma}/a_{i}^{\gamma}, \quad j \geqslant 1.$$

The series $\sum_{j=1}^{\infty} |1 - {}^{j}\hat{K}(u|a_{j})|$ converges uniformly on compact subsets of R. The infinite product $g = \prod_{j=1}^{\infty} {}^{j}\hat{K}_{a_{j}}$ is hence defined.

Moreover, setting: $g_m = \prod_{j=1}^{m-j} \hat{K}_{a_j}$, we have

$$|g_m| = |g_{m-1}|^m \hat{K}_{a_m}| \le |g_{m-1}| \|^m K_{a_m}\|_1 = |g_{m-1}| \|^m K\|_1.$$

Hence, for m > n

$$|g_m| \leqslant |g_n| \prod_{j=n+1}^m ||jK||_1.$$

As $\prod_{j=1}^{\infty} \| {}^{j}K \|_{1} < \infty$ and ${}^{N}\hat{K} \in L^{1}$, there exists a constant B > 0 such that $\| g_{m} \| \leq B \| g_{N} \|$ for m > N and hence, $g_{m} \in L^{1}$ for $m \geq N$.

By the Lebesgue convergence theorem, $||g_n - g||_1 \to 0$ as $n \to \infty$. Now, for $m \ge 1$

$$f_m = f_0 * ({}^{1}K_{a_1} * \cdots * {}^{m}K_{a_m}),$$

and so,

$$\hat{f}_m = \hat{f}_0 \cdot \prod_{j=1}^m {}^j \hat{K}_{a_j} = \hat{f}_0 \cdot g_m.$$

For $m \ge N$, we then have

$$f_m = \mathscr{F}^{-1}[\hat{f}_0 \cdot g_m], \quad \text{a.e.}$$
 (9)

But

$$\begin{split} \| \, \mathscr{F}^{-1}(\hat{f}_0 \cdot g_m) - \mathscr{F}^{-1}(\hat{f}_0 \cdot g) \|_{\infty} \\ \leqslant \| \hat{f}_0(g_m - g) \|_1 \leqslant \| \hat{f}_0 \|_{\infty} \, \| \, g_m - g \, \|_1 \leqslant \| f_0 \, \|_1 \, \| \, g_m - g \, \|_1 \, . \end{split}$$

Hence, $\{f_m\}$ converges in L^{∞} and we have

$$f_{L^{\infty}} = \mathscr{F}^{-1}(\hat{f_0} \cdot g),$$
 a.e. Q.E.D.

Remarks. (1) Relation (9) holds everywhere if f_m is continuous. Also, if we set $g_m^* = \hat{f_0} \cdot g_m$, then the condition ${}^{N}\hat{K} \in L^1$ could be replaced by $g_{n_0}^* \in L^1$ for a certain n_0 .

(2) Conditions (3) and (8) could be equivalently expressed by saying that each of the ratios is, respectively, a (L^1, L^1) and (L^2, L^2) multiplier such that the corresponding two sequences of multiplier operators are uniformly bounded (see Butzer [2]).

COROLLARY. Under the same conditions as Theorem 2, if there also exists sK continuous such that $\{v^j \, {}^sK(v)\} \in L^1$ for any $j \ge 1$, then, $f_{L^\infty} \in C^\infty$. Moreover, if $\sum_{j=1}^\infty (1/a_j) < \infty$ and f_0 and jK , j=1,2,..., have their supports in a bounded set $D \subseteq R$, then f_{L^∞} too has compact support.

Proof. We have $g^* \in L^1$ where $g^* = \hat{f_0} \cdot g$. There exists a constant A such that for $j \ge 1$

$$|v^{j}g^{*}(v)| \leq A ||f_{0}||_{1} |v^{j} {}^{s}\hat{K}(v)|.$$

Hence, $v^j g^*(v) \in L^1$, and with $D^{(j)}$ denoting the jth derivative,

$$D^{(j)}[\mathscr{F}^{-1}(g^*)] = \mathscr{F}^{-1}[(iv)^j g^*(v)].$$

Now, by continuity of ${}^{s}K$, f_{s} is continuous (property of convolutions). For m > s (9) holds everywhere.

Hence, we have $f_n \to \mathscr{F}^{-1}g^*$ in L^{∞} and $f_{L^{\infty}} \in C^{\infty}$.

Let Supp(f) denote the support of the function f in R. By a property of convolutions we have:

$$Supp(f_1) \subseteq Supp(f_0) + Supp({}^{1}K_{a_1})$$
$$\subseteq D + (1/a_1) D.$$

Let $I = [-\xi, \xi]$ be a closed interval containing D. We have:

$$D + (1/a_1)D \subseteq I + (1/a_1)I.$$

In general, if

$$\operatorname{Supp}(f_{n-1}) \subset I + \left[\sum_{j=1}^{n-1} (1/a_j)\right] I,$$

then,

$$\operatorname{Supp}(f_n) \subset \operatorname{Supp}(f_{n-1}) + \operatorname{Supp}({}^nK_{a_n})$$

$$\subset I + \left[\sum_{j=1}^{n-1} (1/a_j)\right] I + (1/a_n) D$$

$$\subset I + \left[\sum_{j=1}^{n} (1/a_j)\right] I.$$

Hence, Supp
$$(f_{L^{\infty}}) \subset (1 + \lambda)I$$
, where $\lambda = \sum_{j=1}^{\infty} (1/a_j)$. Q.E.D.

Remark. It is obvious that the conditions in the first part of the corollary could be replaced by: " f_m is continuous for a certain m and $v^jg^*(v) \in L^1$." By the smoothing properties of convolutions, we know that f_n is then continuous for n > m. This remark is used in the following application.

4

DEFINITION. Let $\{N_j\}_{j=0}^{\infty}$ be a sequence of positive reals. By $C\{N_j\}$ we denote the class of all $f \in C^{\infty}$ such that $||f^{(j)}||_{\infty} \leq \alpha_f \beta_f^{\ j} N_j$, j=0,1,2,... where α_f and β_f are positive constants that depend only on f. The class $C\{N_j\}$ is said to be quasi-analytic if $f \in C\{N_j\}$ and $f^{(n)}(0) = 0$ for n=0,1,2,..., imply that $f \equiv 0$. Otherwise, $C\{N_j\}$ is called non quasi-analytic.

The Denjoy-Carleman theorem states that a necessary and sufficient condition for $C\{N_i\}$ to be nonquasi-analytic is that

$$\sum_{n=1}^{\infty} (N_{n-1}/N_n) < \infty.$$

As the non quasi-analyticity of a class is equivalent to the existence in this class of a function with compact support (see Rudin [4]), the following proposition, due to Bray and Mandelbrojt [3], shows the sufficiency of the above condition.

PROPOSITION. Let $\{N_n\}_{n=0}^{\infty}$ be a sequence of positive numbers such that

$$N_0 = 1$$
 and $\sum_{n=1}^{\infty} (N_{n-1}/N_n) < \infty$.

Let $\eta>0$ be sufficiently small. We set $\lambda_1=\lambda_2=\eta$ and for $n\geqslant 3$, $\lambda_n=N_{n-3}/N_{n-2}$.

If f_0 is a bounded measurable function with compact support and $\{f_n\}$ the sequence of functions defined inductively by

$$f_n(x) = (1/2\lambda_n) \int_{-\lambda_n}^{\lambda_n} f_{n-1}(x+t) dt, \qquad n = 1, 2, \dots$$
 (10)

Then, $\{f_n\}$ converges uniformly to a function with compact support in $C\{N_i\}$.

Proof. The direct proof is given in [3]. To use the corollary to Theorem 2, we set: for $j \ge 1$

$$a_j = 1/\lambda_j$$
,

and

$${}^{j}K = (\pi/2)^{1/2},$$
 for $|x| \le 1$
= 0, for $|x| > 1$.

Let D be any bounded set such that

$$D \supset [-1, 1] + \operatorname{Supp}(f_0).$$

We see by (10) that f_1 is continuous. Also,

$$g^*(v) = \hat{f_0}(v) \prod_{i=1}^{\infty} (\sin \lambda_i v / \lambda_i v), \quad v \in R.$$

Hence, for $j \geqslant 1$

$$|v^{j}g^{*}(v)| \leqslant |v^{j}| |\hat{f_{0}}(v)| \prod_{i=1}^{j+2} |\sin \lambda_{i}v/\lambda_{i}v|$$

 $\leqslant |\hat{f_{0}}(v)| (\sin \eta v/\eta v)^{2} (\lambda_{3}\lambda_{4} \cdots \lambda_{j+2})^{-1}$
 $= |\hat{f_{0}}(v)| (\sin \eta v/\eta v)^{2} N_{j}.$

Hence, $v^j g^*(v) \in L^1$, and by the remark to the corollary, $f_{L^{\infty}} \in C^{\infty}$, and has compact support. As

$$egin{align} D^{(j)} f_{L^{\infty}} &= \mathscr{F}^{-1}[(iv)^j \ g^*(v)], \ & \| \ D^{(j)} f_{L^{\infty}} \|_{\infty} & \leqslant (\| f_0 \ \|_1/\eta) (\pi/2)^{1/2} \ N_j \ , \ & \end{aligned}$$

and

$$f_{I^{\infty}} \in C\{N_j\}.$$
 Q.E.D.

CONCLUSION

The preceding results could be readily generalized to several variables.

ACKNOWLEDGMENT

Thanks are due to the referee for his suggestions and comments on the earlier draft of this paper.

REFERENCES

- P. L. BUTZER, Fourier transforms methods in the theory of approximation, Arch. Rat. Mech. Anal. 5 (1960), 390-415.
- 2. P. L. BUTZER AND R. J. NESSEL, "Fourier Analysis and Approximation," Academic Press, New York/London, 1971.
- 3. S. Mandelbrojt, "Analytic Functions," Rice Justitute Pamphlet, Vol. 29, 1942.
- 4. W. Rudin, "Real and Complex Analysis," McGraw-Hill, New York, 1966.
- H. S. SHAPIRO, "Smoothing and Approximation of Functions," Van Nostrand-Reinhold, New York, 1969.