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Let {’K};*, be a sequence of kernels, let {a;} 2, be a sequence of positive numbers,
and let f; be a measurable function. Setting J, = f, , we study the convergence in
L1 < p < 2and p = =) of the sequence of singular integrals {J,}2 , defined
inductively by

Tux) = (@,/@m)) f ® Joc — D) "K@ndr,  xeR.

The convergence of {J,} in L® finds an application in Bray-Mandelbrojt’s
“‘repeated averaging” construction concerning a non quasi-analytic class of
functions.

We will work with the normalized Lebesgue measure on R, the real line
(dm(x) = dx/(2m)'/?), and will follow Butzer [2] for the definitions of the
Fourier transform f of a function fe L* (1 < p < 2) and of the Fourier—
Stieltjes transform § of a function g € BV.

For fe LY, the inverse Fourier transform of f is defined by:

FN0) = [ fo) et dm(x),  teR.
The proofs of the following propositions can be found in Butzer [2].

PROPOSITION 1. Letgie L', goe L? (1 < p < 2),and ¢ = g, x g, , then,
pel?, ¢ =4§ &, ae (everywhereif p = 1) and| ¢, < llgil1llgl,-

PROPOSITION 2. Let g, , 8, € BV and y(x) = (1/(2w) /%) ffw gi{x — u) dg,(u);
then, i € BV, ‘L =g SHand | $llzy <& lar g llay-
If g.(x) = ffw W) di, he L' (ie., g, is absolutely continuous), then
=& hoand || lsy <lgilsv bl
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ProOPOSITION 3. Letge BV, feL? (1 <p < 2),and

Hex) = @m) [ fix — w) dew;
then, he L*, k :f'g a.e., (everyhwere if p = V) and || hll, < || fll»] gliav -

DerFiNiTiION 1. A function K e NL! is called a kernel; by K, , a > 0, we
mean the function defined by:

K. (x) = aK(ax), x€R.
We have the following theorem concerning the saturation class in L?
(I < p < 2) of the singular integral

Jon) = [ f&x = w KW dm@),  xeR

THEOREM (Butzer). Let the kernel K be such that there exist s € NBV, and
constants ¢ # 0, y > 0 satisfying:

(1 — R@)jclv ] =), v+0.
Then, the saturation class for the singular integral J, ., (with order p=) is:
(i) In LM, the class of functions f for which there exists g € BV such that
clvl f) = &o). 1)

(i) In L* (1 < p < 2), the class of functions f for which there exists
g€ L? such that

clvl” flv) = §Q). (2)

Proof. See Butzer [2].
We denote the saturation class above by

S(K, p™, p), for 1 <p <2

2

We now consider {"K};_, , a sequence of kernels; {a,};_,, a sequence of
positive numbers; and f;, a measurable function. By {f,}>_,, we mean the
sequence defined by the iterative process

Snr = fu * "+1Kan+1 > n=20,1,2,.
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We have the following

THEOREM 1. Suppose there exist constants v > 0, ¢ % 0 and a sequence
of functions {3y}, C NBV such that for j > 1

(1 —iRW)c|ul =), ueR  u+#0. (3)

Moreover, suppose that ]_[;';1 Il ‘K ||, converges.

If35., (1/a,)” converges, then, for fy € SCK, p=, p) (1 < p < 2), the sequence
{ /oty converges in L? to fi, , and we also have || fro — foll» < A4 Z;';l (1/a;),
where A is a constant independent of {a;}.

Proof. We follow Butzer [1].

(i) p = 1. Since f,e€S(K, p7, 1), by Butzer’s theorem, there exists
g € BV such that

clo fov) = §0), veR 4)
Consider the sequence {g,} defined by
gO = g,

and

gni1=gn* "MK, ., n=012...

By Proposition 2, we have, forn > 1,

I gnllav < Il gna lov || "Ka, In < -+ < 1€ llav [T 11K, lh

j=1

Since || fKaj I, =1 ’K |y, and [T, || ’K}l; < oo, there exists a constant
A >Osuchthat| g,llzy <[ gllav M < 4, n =1
Also, if we define

") = @A) [ gualx — ) dam)), xR,

then,
g (1) = £n_a(v) "P(v/ay), veR.

Setting ", (x) = "P(a,x),
| "ba, 5y < | 8nallav || "o, llay < A 1| " lly = A. (5

Now, as f; = f; = 'K, , we have f, = f, - 'K, . Hence, a;"(f, — fo) =
arfo@)[t — *R(v/a)], ve R.
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But by (3) and (4), and taking j = 1,
a1 — K(v/ay)] = () W(v/a)) = 1, (v).

Hence, by the uniqueness theorem on Fourier—Stieltjes transforms
1000 = a [ U4 — A du,  xeR,

and by (5), ay I fo — filh =l 195111 gy < A.
Thus, || fo — f1lh < A4a7”.
We also have

clol fiw) = clv ] fov) - 1R (v/ay)
= §(v) - 'K(v/a,) = (g * Ka)(v) = (£)(v).

If we suppose by induction
1o foa® = Faa®),  gaa€BV (6)
then, by Proposition 2,

¢l ol fu®) = ¢ | v fus(v) "R(v/ay)
= gv n—l(v) nK(U/ an)
= (gn ¥ "Ky )(©) = Zuv).

fn :fn—l * nKa,,

fn :fn—l : nKan P

and

Vo —f)@) = i@l — "R(v/a,)],  veR (7
By (3) and (6) we have
a7 faaO)[1 — "R(v/an)] = gny(v) "(v/ay) = "P0,(v).
Again, by (7) and the uniqueness theorem, we have
") = @@ [ [fus) = @] du, R,

and || fuy — fulh < Aay”.
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As the series Z;';l (1/a;) converges, {f,} is a Cauchy sequence in L! and
converges to a limit f;1 in L', Moreover,

fn— fole <A (Jay.
i1

(ii)) 1 < p < 2. The proof is similar to that in (i), using now the
relation ¢ | v |* f(v) = £(v), g € L? and Propositions 1 and 3. Q.E.D.

Remark. It is obvious that for {f,} to converge, the condition
Jo € SCK, p~, p) could be replaced by f, € S("K, p—, p) for a certain r > 1.

3

THEOREM 2. Suppose there exist constants y > 0 and A > 0 such that,
foranyj =1
| 1 — R (W)

<4, ®)

Moreover, suppose 1'];11 K|l < oo.
If 351 (1)a;)r < oo and there exists N = 1 such that NK e L, then, for
fo€ LY, the sequence {f,} converges in L® (to fix).

Proof. We have

11— R < A|ul.
Hence,
|1 —R@ja)l < 4lulay, j=1.

The series 3., 11 — iK(ufa;)| converges uniformly on compact subsets
of R. The infinite product g = IT;_; K, is hence defined.
Moreover, setting: g,, = H;il "K,j , we have

1 8m | = | 8m1 ™Kap | <1 8mea | 1"Kap Il = | Gma | | ™K Iy -
Hence, for m > n
lgm| <lg&ul 1 'Kl .
j=n+1

As TT;1 I ’K [}, < oo and MK € L1, there exists a constant B > 0 such that
|gm| < Blgy| for m > N and hence, g,, € L* for m > N.

By the Lebesgue convergence theorem, {| g, — g |l; = 0 as n — 0. Now,
form > 1

fm :fo * (lKal * ootk mKam)a
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and so,
A A ™ s A
Jm=1lo" H)Ka,»:f()'gm-
j=1
For m > N, we then have

fm = g~1[f0 ' gm]’ a.c. (9)
But

| F Sy gm) — Ffo " &)l
<1 fogm — O <l follolgm —&lh <Al lign — &l -

Hence, {f,.} converges in L* and we have

fro=F Uy 8, ae
QED.

Remarks. (1) Relation (9) holds everywhere if f,, is continuous. Also,
if we set g,,* = f, - g, then the condition MK e L' could be replaced by
gn, € L' for a certain n, .

(2) Conditions (3) and (8) could be equivalently expressed by saying
that each of the ratios is, respectively, a (L', L') and (L2, L?) multiplier such
that the corresponding two sequences of multiplier operators are uniformly
bounded (see Butzer [2]).

COROLLARY. Under the same conditions as Theorem 2, if there also exists
sK continuous such that {v' *K(w)} € L! for any j > 1, then, fi~ € C*. More-
over, if 2?;1 (1/a;) < oo and f, and ‘K, j = 1, 2,..., have their supports in a
bounded set D C R, then f;« too has compact support.

Proof. We have g* ¢ L where g* = f, - g.
There exists a constant 4 such that for j > 1

| g*@) < Al folh | V7 *R@)I.
Hence, vig*(v) € L', and with DY denoting the jth derivative,
DINFYg*¥)] = FH(ivy g*(©)].

Now, by continuity of °K, f, is continuous (property of convolutions).
For m > s (9) holds everywhere.
Hence, we have f, — #~1g*in L* and f;» € C*,
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Let Supp( f) denote the support of the function /'in R. By a property of
convolutions we have:

Supp( /1) C Supp(fy) + Supp(*K,,)
CD -+ (l/a) D.

Let I = [—£, €] be a closed interval containing D. We have:
D + (l)a)D C I + (1/a)L.

In general, if

Supp(fus) C 1+ {z (1/aj)] I

then,
Supp(/») C Supp(f,-1) + Supp("K,,)
CrI—+ [nf (l/a,-)} I+ (lja,) D
o1
j=1
Hence, Supp(fi«) C (I 4 A, where A = 3~ (1/a;). Q.E.D.

Remark. 1t is obvious that the conditions in the first part of the corollary
could be replaced by: ““f,, is continuous for a certain m and vig*(v) e L1.”
By the smoothing properties of convolutions, we know that f, is then
continuous for » > m. This remark is used in the following application.

4

DEerFINITION.  Let {N;}j2, be a sequence of positive reals. By C{N,} we denote
the class of all fe C* such that || f9 ||, < «;B/N;,j =0, 1,2,.. where o
and B; are positive constants that depend only on f. The class C{N;} is said
to be quasi-analytic if fe C{N,;} and f"™(0) =0 for n =0, 1, 2,..., imply
that f = 0. Otherwise, C{N,} is called non quasi-analytic.

The Denjoy—Carleman theorem states that a necessary and sufficient
condition for C{N;} to be nonquasi-analytic is that

S (NuafN) < o0,

n=1
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As the non quasi-analyticity of a class is equivalent to the existence in this

class of a function with compact support (see Rudin [4]), the following

proposition, due to Bray and Mandelbrojt [3], shows the sufficiency of the
above condition.

PROPOSITION.  Let {N,}_, be a sequence of positive numbers such that
Ny =1 and Y (Nyy/N,) < 0.
n=1

Let 5 >0 be sufficiently small. We set A\, =X, =n and for n =3,
An = n~3/Nn—2 .

If 1 is a bounded measurable function with compact support and {f,} the
sequence of functions defined inductively by

)\’IL

Fulx) = (1/2),) f foalx £0)dt, n=12,... (10)
_’\n

Then, { f,} converges uniformly to a function with compact support in C{N,}.

Proof. The direct proof is given in [3]. To use the corollary to Theorem 2,
we set: forj = 1

72
and

iIK = (a[2)'3, for |x] <1
= 0, for {x|>1.
Let D be any bounded set such that

DD [—1, 1] + Supp(fy).
We see by (10) that f; is continuous. Also,

g () = f,(v) I (sin Az/A0), veR.
i=1
Hence, forj > 1

i+2
| vig*@)| < | V] [ fo@)] [T |sin Adw/A |

i=1
< |f0(1.7)| (sin gu/nv)? (AgA, - Asye)
= | /o®)| (sin 5v/no)* N; .
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Hence, v'g*(v) € L', and by the remark to the corollary, f;« € C®, and has
compact support. As

Do = F(Y g*0))
| DS o |, < (U fo l/m)(m/2H 2 N;
and
[ CW, QE.D.

CONCLUSION

The preceding results could be readily generalized to several variables.
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