
JOURNAL OF APPROXIMATION THEORY 16, 234-242 (1976)

Saturation and an Iterative Construction Process

THU PHAM-GIA

Departement de Mathematiques, Universite de Moncton, Moncton, New Brunswick, Canada

Communicated by Oved Shisha

Received May 23, 1974

Let {;K};:', be a sequence of kernels, let {a;};:', be a sequence of positive numbers,
and let 10 be a measurable function. Setting Jo = 10, we study the convergence in
U(I ,;;;; p ,;;;; 2 and p = co) of the sequence of singular integrals {In}~, defined
inductively by

In(x) = (an/(27T)'/2) L: In_,(x - t) nK(ant)dt, x E R.

The convergence of {In} in LOO finds an application in Bray-Mandelbrojt's
"repeated averaging" construction concerning a non quasi-analytic class of
functions.

We will work with the normalized Lebesgue measure on R, the real line
(dm(x) = dxj(27T)I/2), and will follow Butzer [2] for the definitions of the
Fourier transform! of a function IE V' (1 ~ p ~ 2) and of the Fourier
Stieltjes transform Cof a function g E BV.

For IE Ll, the inverse Fourier transform ofI is defined by:

(fF-If)(t) = r j(x) eixt dm(x),
-00

t E R.

The proofs of the following propositions can be found in Butzer [2].

PROPOSITION 1. Let gI E V, g2 E Vi (1 ~ p ~ 2), and e/> = gI * g2, then,
e/> EP, ~ = gI . g2 , a.e. (everywhere ifp = 1) and II e/> lip ~ II gI 11111 g211p .

PROPOSITION 2. Let gI' g2 E BV and if;(x) = OJ(27T)I/2) COO gI(X - u) dg2(u);
then, if; EBV, ~ = /1 . C2 and II if; IIBv ~ II gI IIBv II g2 IIBv .

If g2(X) = S:oo h(t) dt, hE U (i.e., g2 is absolutely continuous), then
~ = CI . II, and II if; IIBv ~ 11 gI IIBv II hilI·
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PROPOSITION 3. Let g E BV, I E V (1 ~ p ~ 2), and

hex) = (1J(27T)1/2) {' f(x - u) dg(u);
-00
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then, hE V, It =!. j a.e., (everyhwere ifP = 1) and II h lip ~ Ilfllp II g IIBv .

DEFINITION 1. A function K END is called a kernel; by Ka , a > 0, we
mean the function defined by:

Ka(x) = aK(ax), xER.

We have the following theorem concerning the saturation class in LP
(1 ~ P :(; 2) of the singular integral

J(o'/)(x) = Ioo

f(x - u) Ko(u) dm(u), x E R
-Of;

THEOREM (Butzer). Let the kernel K be such that there exist 0/ E NBV, and
constants c =1= 0, y > °satisfying:

(l - K(v))jc I v IY = ~(v), v =1= 0.

Then, the saturation class for the singular integral J(o,') (with order p-Y) is:

(i) In D, the class offunctionsllor which there exists g E BV such that

c I v IY!(v) = j(v). (1)

(ii) In V (1 < P ~ 2), the class of functions f for which there exists
g E Lli such that

c I v IY!(v) = g(v).

Proof See Butzer [2].
We denote the saturation class above by

(2)

S(K, p-Y, p), for I ~ p :(; 2.

2

We now consider {nK}:~l' a sequence of kernels; {an}:=l, a sequence of
positive numbers; and fo, a measurable function. By {fn}:~l' we mean the
sequence defined by the iterative process

n = 0,1,2,...
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We have the following
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THEOREM 1. Suppose there exist constants y > 0, c oF °and a sequence
offunctions {iif1}':~1 C NBV such that for j ~ 1

(1 - jK(u))!c I u Iv = j;P(u), uER, u oF 0. (3)

Moreover, suppose that n'::lll jKill converges.
/f2:.'::1 (l!aj)v converges, then,forfo ES(lK, p-v,p) (l ~ p ~ 2), the sequence

{fn}~=l converges in LV to fLP , and we also have IlfLv - /0 lip ~ A 2:.'::1 (ljaj)v,
where A is a constant independent of {aj}.

Proof We follow Butzer [1].

(i) p = 1. Since fo E S(lK, p-v, 1), by Butzer's theorem, there exists
g E BV such that

c I v Iv lo(v) = j(v),

Consider the sequence {gn} defined by

and

By Proposition 2, we have, for n ~ 1,

vER.

n = 0,1,2,....

(4)

n

II gn IIBv ~ II gn-lllBv II nKaJl ~ ... ~ II g IIBV nil jKa; 111
j=l

Since II jKa; 111 = II jKill, and n'::lll jKill < 00, there exists a constant
A > °such that II gn IIBv ~ II g IIBv M n ~ A, n ~ 1.

Also, if we define

then,

nePa/ x ) = (lj(27T)1/2) fro gn-l(X - u) d(nif1(anu)),
-ro

X E R,

V E R.

Setting nif1a (x) = nif1(anx),
n

II nePan IIBv ~ II gn-l IIBv II nljJan IIBv ~ A II nljJ IIBv = A. (5)

Now, as h = fo * lKa , we have 11 = 10' lKa . Hence, alv(/o - !I)(v) =
, ,.,. 1 1

alvfo(v)[l - l.l\..(v!al)], v E R.
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But by (3) and (4), and taking) = I,

aiY[!o(v)(1 - lK(v/al))] = g(V) l~(V/al) = l¢a/V).

Hence, by the uniqueness theorem on Fourier-Stieltjes transforms
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lepa,(X) = ai" r [fo(u) - fl(U)] du,
-a)

and by (5), ail' lifo - fIliI = Illepa IIBv ~ A.
1

Thus, lifo -fIliI ~ Aa1"·
We also have

XER,

c I v I" !l(V) = C I v I" j~(v) . lK(v/al)

= g(v) .1K(v/al) = (g *lKa,)(v) = (gl)(V).

If we suppose by induction

C I v I"!n-l(V) = gn-l(V),

then, by Proposition 2,

gn-l E BV (6)

C I v I" fn(v) = C I v I" j~-l(V) nK(vjan)

= gn-l(V) nK(vjan)

= (gn ,;: nKaJ(v) = gn(v).

As

fn = fn-l * nKan

!n = !n-l . nKan ,

and
vER (7)

By (3) and (6) we have

an"!n-l(v)[1 - nK(vjan)] = gn-l(V) n~(vjan) = n¢an(V).

Again, by (7) and the uniqueness theorem, we have

nepan(X) = (a n"j(27T)1(2) r [fn-l(U) - fn(u)] du,
-a)

and Ilfn-l - fn 111 ~ Aa;;Y.

XER,
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As the series L;:l (l!ai)" converges, Un} is a Cauchy sequence in V and
converges to a limitfLl in V. Moreover,

00

lifLl - fo 111 ::;;; A L (l/ai)"·
i~l

(ii) 1 < p ::;;; 2. The proof is similar to that in (i), using now the
relation c I v IV!o(v) = g(v), g E U and Propositions 1 and 3. Q.E.D.

Remark. It is obvious that for Un} to converge, the condition
fo E S(lK, p-", p) could be replaced by fr E s(rHK, p-v, p) for a certain r ~ 1.

3

THEOREM 2. Suppose there exist constants y > 0 and A > 0 such that,
for any j ~ 1

(8)

Moreover, suppose n~~lll iKlll < 00.

lf L;:l (l!ai)" < 00 and there exists N ~ I such that NK E V, then, for
fa E V, the sequence Un} converges in Loo (to fLoo).

Proof We have

Hence,
j ~ 1.

The series L;:l 11 - iK(u!ai) I converges uniformly on compact subsets
of R. The infinite product g = n;:l i Kal is hence defined.

Moreover, setting: gm = n;':l iKa ., we have
J

Hence, for m > n
m

I gm I ::;;; Ign I TI II iK 111 •
i~n+l

As n;:lll iKlll < 00 and NK E V, there exists a constant B > 0 such that
1gm I ::;;; B I gN I for m > N and hence, gm E V for m ~ N.

By the Lebesgue convergence theorem, II gn - gill ->- 0 as n ->- 00. Now,
for m ~ 1
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and so,
m

/m = /0' n iKa; = /0' gm·
i~l

For m ~ N, we then have
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a.e. (9)

But

Ii ;#-1(/0 . gm) - ;#-1(/0 . g)lloo

~ II/o(gm - g)lll ~ 11/01100 II gm - g 111 ~ 11/0 I!ll! gm - gill'

Hence, {1m} converges in £00 and we have

Q.E.D.

Remarks. (l) Relation (9) holds everywhere if 1m is continuous. Also,
if we set gm* = 10' gm, then the condition NK E V could be replaced by
g: E V for a certain no .

o

(2) Conditions (3) and (8) could be equivalently expressed by saying
that each of the ratios is, respectively, a (V, V) and (V, V) multiplier such
that the corresponding two sequences of multiplier operators are uniformly
bounded (see Butzer [2]).

COROLLARY. Under the same conditions as Theorem 2, if there also exists
sK continuous such that {Vi SK(v)} E V lor any j ~ 1, then, ILOO E Coo. More
over, ifL~~l (lfai) < 00 andlo and iK, j = 1,2,.. " have their supports in a
bounded set D C R, then ILoo too has compact support.

Proof. We have g* E £1 where g* = 10 . g.
There exists a constant A such that for j ~ 1

I vig*(v) I ~ A 1I.to 111 IVi SK(v)l.

Hence, vig*(v) E £1, and with D(j) denoting the jth derivative,

D(i)[;#-l(g*)] = ;#-l[(iV)i g*(v)].

Now, by continuity of 8K, Is is continuous (property of convolutions).
For m > s (9) holds everywhere.

Hence, we have In ---->- ;#-lg* in £00 and ILoo E COO.
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Let Supp( f) denote the support of the function I in R. By a property of
convolutions we have:

Supp(h) c Supp(j~) + Supp(lKa,)

CD + 0/a1) D.

Let 1= [-g, g] be a closed interval containing D. We have:

In general, if

Supp(fn-1) C I + [~ (1/a;)] J,

then,

Supp(j~) C Supp(fn-1) + Supp(nKaJ

C J + l~: (l/a;)J J + (l/an) D

C J + [;t1 (l/a;)] J.

Hence, Supp(fv"') C (l + t..)I, where t.. = L::1 o(a;). Q.E.D.

Remark. It is obvious that the conditions in the first part of the corollary
could be replaced by: "1m is continuous for a certain m and v;g*(v) ED."
By the smoothing properties of convolutions, we know that In is then
continuous for n > m. This remark is used in the following application.

4

DEFINITION. Let {N;}):o be a sequence of positive reals. By C{N;} we denote
the class of all IE Ceo such that Ilf(j) lleo ,s;: Oif(3fW;, j = 0, 1,.2,... where Oif
and (3f are positive constants that depend only on f The class C{N;} is said
to be quasi-analytic if IE C{N;} and jln>(o) = °for n = 0, 1,2,..., imply
that I == 0. Otherwise, C{N;} is called non quasi-analytic.

The Denjoy-Carleman theorem states that a necessary and sufficient
condition for C{N;} to be nonquasi-analytic is that

eo
I (Nn _1/Nn ) < 00.
n=1
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As the non quasi-analyticity of a class is equivalent to the existence in this
class of a function with compact support (see Rudin [4]), the following
proposition, due to Bray and Mandelbrojt [3], shows the sufficiency of the
above condition.

PROPOSITION. Let {Nn}~~o be a sequence ofpositive numbers such that

and
00

I (Nn - 1/Nn ) < O'J.
n=l

Let 7J > 0 be sufficiently small. We set '\ = A.2 = YJ and for n ~ 3,
A.n = Nn- 3/Nn- 2 .

Iffo is a bounded measurable function with compact support and Un} the
sequence offunctions defined inductively by

fix) = (1/2A.n) (n In-1(x + t) dt,
-An

n = 1,2,.... (10)

Then, Un} converges uniformly to afunction with compact support in C{Nj }.

Proof The direct proof is given in [3]. To use the corollary to Theorem 2,
we set: for j ~ 1

aj=l/A.j ,

and

= 0,

Let D be any bounded set such that

for I x I :s;; 1

for I x I > 1.

D -:J [-1, I] + Supp(fo).

We see by (10) that h is continuous. Also,

00

g*(v) = !o(v) n(sin A.iV/A.iV),
i~l

Hence, for j ~ 1

V E R.

j+2

I vjg*(v) I :s;; I vj I I!o(v) I n I sin A.iV/A.iV I
i~l

:s;; I!o(v) I (sin 7Jv/7Jv)2 (A.3A.4 ••• A. j +2)-1

= I!o(v) I (sin 7JV/7JV)2 N j •
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Hence, vig*(v) E L1, and by the remark to the corollarY,fvXl E Coo, and has
compact support. As

D(j~fLOO = ~-l[(iv)i g*(v)),

II DUlj'Loo 11
00
~ (llf~ IldT))(7T/2)1/2 N i ,

and

Q.E.D.

CONCLUSION

The preceding results could be readily generalized to several variables.
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